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Figure 1. Outbreak of COVID-19 pandemic and number of worldwide deaths!?.2]

Lack of vaccination and effective treatment.

Reporting delays of surveillance data (confirmed cases, hospitalization and deaths) for tracking pandemic waves;
Countries with lack of surveillance capacity

COVID-19 pandemic has affected healthcare around the world.

The availability of a reliable, real-time indicator of pandemic would aid in timing public health interventions.
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Introduction
Related work

1 Social media posts: creating an early warning system 315

* LSTM

Proxy Techniques Disease Country Training period (COVID-19)
Google Trends; * Textminingand sentimentanalysis Influenza, us, Winterseasons: December 15, 2018 to January 21, 2019,
Twitter; (Keyword extraction, TF-IDF, COVID- dengue, Zika, Canada, December 15, 2019 to January 21, 2020;
News paper twitter-BERT, BM, SVM, Naive Bayes) COVID-19 Australia, March 1, 2020 to August 21, 2020;
feeds; e Anomaly detection (SH_ESD) Japan, January 2020 to March 2020;
» Statistical tests (Kolmogorov-Sminrvov, India, February 15, 2020 to March 18, 2020;
Anderson-Darling, Pearson correlations) Colombia, January 22, 2020 to April 3, 2020;
* Linearregression Iran Separate COVID-19 pandemicwaves

-1 Highlights of the study

Multiproxies

Multivariables

eGoogle Trends *COVID-19 related German symptoms

eTwitter

' Longertraining period

eJanuary2020to June 2022

e|log linearregression model
eRandom Forest/ LSTM

Seite 5

Slide credits: Danqi Wang

|

—

~ Fraunhofer

SCAl



Workflow

COVID-19 ontology

l Filtering of noisy symptom terms

corpus
l Translate to German (Deepl) Surveillance data
Google Trends API * Google Trends data . Sﬁ: gonftlrr‘med cases
Twitter developer API >« Tuwitter data cams
* RKI hospitalization
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Result — Country-level trend analysis
Visualization of the up and downtrends
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Figure 4. Visualization of the event detection procedure applied to Google Trends, Twitter search and Combined P.
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Result — Country-level trend analysis
Pairwise event comparison

1 Lagging correlation between proxies and gold standard

A Uptrend events RKI confirmed cases RKI hospitalization
Combined . . Combined — e
Twitter [+ | Twitter I—
Google Trends F —I Google Trends I— 4|
30 20 -10 0 20 10 0

B. Downtrend events

Combined }—{ I |—{ Combined |————— —
Twitter ‘ Twitter }7
Google Trends ’—| | |—| Google_Trends I— H
-20 -10 0 -30 -20 -10
Information availability (days) Information availability (days)

RKI deaths
Combined I— —|
Twitter
Google Trends g
20 10 0 10
Combined
Twitter |—— —

Google Trends

-15 -10 -5 0 5

Information availability (days)

Figure 5. Up/down trend event detection results for pairwise comparisons between COVID-19 proxies(Google Trends, Twitter, Combined P)
and gold standards A) RKI confirmed cases; B) RKI hospitalization; C) RKI deaths in Germany.
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Result — Country-level trend analysis
Up trend events performance metrics — Combined proxies

Proxy names Metric RKI Cases RKI Deaths RKI Hospitalization
Twitter Sensitivity 0.63 0.29 0.56
Precision 0.63 0.25 0.63
F1Score 0.63 0.27 0.59
Google Trends Sensitivity 0.88 0.57 0.78
Precision 0.67 0.33 0.58
F1Score 0.76 0.42 0.67
Combined P Sensitivity 0.63 0.43 0.67
Precision 0.63 0.38 0.75
F1 Score 0.63 0.40 0.71

Table 3. Sensitivity (TPTfTN) and precision (TPTfFP) rates for certain symptom from different proxies as an early indicator for an uptrend in three different
COVID-19 gold standards (RKI confirmed cases, deaths, and hospitalization)
——
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Alert model generation
Trend forecasting (Random Forest & LSTM)

Datasetpreparation

- Feature: Google Trends and Twitter slope data
- Label: Trend of RKI Confirmed Cases/ RKI Hospitalization/ RKI death

Dataset

Data preprocessing
(sliding window approach)

> [Trainingset ]—’

Hyperparameter optimization

Optuna (TPE sampler) @
Time series cross-validation -
Trial size: 90
: Predicted trend
Trained model
Classification
metrics
Input data — >

L 5 [ Test set J

Figure 6. The workflow of trend forecasting

Actual trend
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Result — Country-level trend forecasting
Uptrend forecasting

4 Comparison of alert models

A. RKI confirmed cases RKI hospitalization
Model Metrics Uptrends Model Metrics Uptrends
Google Twitter Combined Google Twitter Combined
Trends Trends
Random sensitivity 0.71 1 1 Random sensitivity 0.88 0.71 0.67
Forest Forest
precision 1 0.6 0.67 precision 1 0.55 0.91
F1score 0.83 0.75 0.8 F1score 0.94 0.62 0.77
Table 5. Evaluation metrics of forecasting models (Random Forest) for forecasting uptrend events (out-of-sample period in 2022) of
A) RKI confirmed cases and B) RKI hospitalization
_—=
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Result — Country-level trend forecasting

Downtrend forecasting

4 Comparison of alert models

A. RKI confirmed cases RKI hospitalization
Model Metrics Downtrends Model Metrics Downtrends
Google Twitter Combined Google Twitter Combined
Trends Trends
Random sensitivity 1 0.71 0.86 Random sensitivity 1 0.88 1
Forest Forest
precision 0.66 0.76 0.81 precision 0.88 0.88 0.95
F1score 0.8 0.74 0.84 F1score 0.93 0.88 0.97
Table 6. Evaluation metrics of forecasting models (Random Forest) for forecasting downtrend events (out-of-sample period in 2022) of
A) RKI confirmed cases and B) RKI hospitalization
_—=
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EARLY ALERT MODEL FOR PANDEMIC SITUATION: CONCLUSION

1 Country- and State-level COVID-19 early warning model in Germany

1 Assessment the utility of Google Trends and Twitter (German symptom based time-series data), and their combined indicator.
1 Models: Probabilistic based log linear regression model (Trend analysis)
1 Random Forest (Trend Forecasting)

1 Country-level trend analysis

Compared with the result of Kogan et al. Blin U.S. (an uptrend in COVID-19 infections could be predicted up to 7 days in advance with an accuracy of

~75%), Google Trends got F1 scores of 0.76 for tracking RKI confirmed cases.

Google Trends can predate an increase in RKI confirmed cases and RKI hospitalization by a median of 16 and 19 days.

1 Country-level trend forecasting

1 RKI confirmed cases: Random Forest-Google Trends (uptrend: F1 score of 0.83; downtrend: F1 score of 0.8)

1 RKI hospitalization: Random Forest-Google Trends (uptrend: F1 score of 0.94; downtrend: F1 score of 0.93)

1 Predictive symptoms for predicting up and down trend events of RKI confirmed cases and RKI hospitalization.

1 Google Trends contains important information for effectively predicting disease incidence.
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Leveraging Clinical Routine Data to Predict Risk of Severe COVID-
19 Disease Progression

Large language model

-4

A patient's medical history|
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Development of a Transformer-
based model for structured EHRs

Ex-MED-BERT Model

Generation of final
representation
(FFNLSTMIGRU | L [ [ [ [ 1]
layer with dropout) *

A
I,->< Add & l\iormalize )

]

T

Prediction of endpoint probability
(Dropout + Linear layer + Sigmoid)

T

LTI TTTTTTTITTITTT]
\lznrtc;ﬁre;stﬁg]g E ( FeedFomward ) no yes E Cc&nﬁtzngg%_rof
B Improved Med-BERT by incorporating further patient sequential 3 |%+---nee--- . output and
: : ) . tayors o | -»(__Add&Normalize ) clusion Jinglal data
information (age, sex, residency / state, medication ; a of quanifatve clincial data
. C Self-Attention g
history) ( _______ R ) b
M Pretrained the model on a large dataset of 3.5 million t
. o1y . . Summation of
patients (988 millioninstances of drugs and diagnoses) embeaded inputs
B Developed predictive risk models for forecasting Acute 4
. . . Embedding of each
Respiratory Manifestations (ARM) post COVID-19 input sequience into w
. . . . vectors
diagnosis using the refined model
: : 4
B Validated model effectiveness and accuracy through A patient's medical history ]
. PheWAS &ATC 0, 1, P 1
benchmarks against Random Forest, RETAIN, and by CEDNCID R €D
XG Boost Sex sequence ( Male ) ( Male ) o--( Male )
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Visit sequence ( 1 ) ( 2 ) see ( 1 )
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ExMed-BERT outperforms RF, RETAIN & XGBoost for predicting
acute respiratory manifestation following COVID-19

ROC for ARM Precision-Recall for ARM

—— EMB-FFN (AUC = 0.382)
—— EMB-GRU (AUC = 0.367)
—— EMB-LSTM (AUC = 0.376)

1.0

0.8 0.8
= —— RETAIN (AUC = 0.224)
o c —— RF (AUC = 0.291)
go6 » 8 0.5 XGB (AUC = 0.282)
0 EMB-FFN (AUC = 0.775) g
04 EMB-GRU (AUC = 0.777) T 0.4
2 EMB-LSTM (AUC = 0.777)

0 RETAIN (AUC = 0.663) a5

RF (AUC = 0.734)
. XGB (AUC = 0.724)
0.0 °* 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate Recall
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Assessing Global Feature Importance using Integrated Gradient
Approach: Top 20 Diagnoses and Drugs for ExXMed-BERT-GRU
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Understanding Relationships: Bayesian Network Analysis of
Morbid Obesity / Angiotensin Il Receptor Blockers and Other

Diagnoses/Drugs

Biguanides
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Angiotensin-ll receptorblockers, plain

100 100
HMG-CoA reductase-inhibitors 98.51 Essent.ypertension

100
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EXMEDBERT: CONCLUSION

We generated customized transformer-based model for structured EHR data

Risk models developed for ARM endpoint outperform RF, RETAIN and XGBoost models
Performance enhancement through incorporation of quantitative clinical data

|dentification of several known risk factors as important features for our model

Transfer learning enables utilization of pre-trained ExMed-BERT model for diverse clinical endpoint
predictions
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Overview of patient demographics in LEOSS.

The Cohort: COVID-19 patients from the Lean European Open Survey on SARS-CoV-2 infected patients

(LEOSS - https://leoss.net)

LEOSS Kaplan-Meier Plot: Death from Covid-19
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Machine learning can predict mortality with high accuracy

) b c) AUC(t) of the Weibull AFT model
a Uno's C-Index ) IBS iAUC = 0.78 (0.01)
0.85 BN COX 03 1.0
E WEI :
- m=cose -

E DEEPSURV 0.25

Tfilﬁﬁ .

. L L

0.6

o
g

Uno's C-Index
o
> 0

COX  WEI XGBSE RSF DEEPSURV WEl XGBSE RSF DEEPSURV = 0 10 20 30 40 50 60 70
Time [Follow-up in days]

Model Model

Model prediction performance measured via Uno's C-index on held outtestsets (COX = elastic net penalized Cox proportional hazards regression; WEI = elastic net penalized Weibull accelerated failure time regression; XGBSE = XGBoost Survival
Embeddings; RSF =Random Survival Forest; DEEPSURV = DeepSurv); (b) model calibration error measuredvia Integrated Brier Score (IBS) onheld outtest sets; (c) model prediction performance as function of time on held out test sets with 95% confidence

interval, withintegrated AUC (iAUC) denoting the mean (standard error) AUC over time. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Feature importances via SHAP values:

* lab measures were the mostrelevant type of features (23.5%
cumulative importance)

* Disease symptoms ranked second (20.5%)

e Comorbidities third (13.2% cumulative importance).

* Comorbidity associated predictors included hypertension, an acute
kidney injury, diabetes and dementia

a) b)

rank |domain feature importance Modality Cumulative Importance [ Number of Features

1|Demographic |Age Ij.s%
2|Symptoms Asymptomatic B | 2.9% Symptoms L )
3|vital 502 Oxygen Saturation B | 2.9% Comorbidities | i 43|
4|Hemato. Lab |Hemoglobin B | 2.6% Vital ) ; ] 11
5|Lab Troponine T B | 2.6% Hemato. Lab J 8
6|Symptoms Muscle Aches B 2.4% Demographic 5 3
7|Lab Ferrit B | 24% Treatments i 5
8|Lab CRP B | 23% CT_Xray : 12
9|Hemato. Lab |Platelets B 2.2% Urine L 2.0%|L 8
10|Demographic |Gender L | 19% Other 1.6%|! 2
o Smoking 1.0%|ll 2
46|Dementia Comorbidities 1] 0.8% Total 100% 160

Total 29.4%

|
~ Fraunhofer
SCAI


https://www.sciencedirect.com/topics/computer-science/extreme-gradient-boosting

Partial dependence plots for most influential predictors

v
|

An asymptomatic Covid-19 infection resulted into a 35% lower
mortality risk compared to more severe disease symptoms

For patients with low hemoglobin level or low oxygen
saturation mortality risk was even increased by 50%

Prior diagnosis of dementia results into an 15% increased
mortality risk after SARS-CoV-2-19 infection (hazard ratio
dementia vs. non-dementia: 1.15;95% Cl: [1.08, 1.24])
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Anti-cancer drugs Regorafenib and Sorafenib help treat COVID-19

patients

By calculating the overlap of multiple knowledge
graphs and subsequent research in GWAS* studies:

Identified Regorafenib and Sorafenib as potential
COVID-19 drugs targeting TYK2 through cellular
screening assay for anti-cytopathic effect.

Regorafenib and Sorafenib were tested in Vero-E6
and Caco2 cell lines against SARS-CoV-2.

Results shown: percentage inhibition of viral
cytopathic effect normalized to Remdesivir as
positive control (100%).

Drug administration occurred 48 or 96 hours post-
infection, with stained, washed, and counted cells
indicating some toxicity, particularly in Caco2 cells
at higher concentrations.c effect compared to
Remdesivir

The slightly negative relative inhibition shown in
panel D is caused by plate control differences
within plates.
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1
s 7 Y& I
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*GENOME-WIDE ASSOCIATION STUDIES

(HTTPS://WWW.GENOME.GOV/GENETICS-GLOSSARY/GENOME-WIDE-ASSOCIATION-STUDIES)
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GREAT NEWS: ONGOING CLINICAL TRIAL!

An Observational Study, Called ROCURS, to Learn About COVID-19 Related Outcomes in People With
Cancer Who Are Treated With Tyrosine Kinase Inhibitors (TKIs) Including Regorafenib or Sorafenib

(ROCURS)
ClinicalTrials.gov ID @ NCT05594147
Sponsor @ Bayer

Information provided by @ Bayer (Responsible Party)
Last Update Posted @ 2023-11-07
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DRUG REPOSITIONING FOR COVID-19: CONCLUSION

B Despite vaccination efforts, COVID-19 cases continued to rise globally until 2021, highlighting the need for effective medications
against severe cases.

B A machine learning (ML) model was developed to predict COVID-19 mortality using extensive observational data from LEOSS,
primarily from German inpatient settings.

B The ML model performs similarly to the established 4C mortality score (from UK) but differs in formulation, focusing on time-
dependent mortality risk after COVID-19 diagnosis.

B The model identifies dementia as a predictor, suggesting TYK2 as a potential drug target for COVID-19.
Regorafenib and Sorafenib, anti-cancer drugs, show promise as potential COVID-19 treatments based on cellular screening assays.

B The study demonstrates the utility of ML-based risk models in identifying potential drug targets and treatment options for COVID-
19.

M Clinical trials already ongoing to confirm the efficacy of Regorafenib and Sorafenib in treating COVID-19.
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Early Alert Model

Clinical Endpoint
Prediction

Appropriate Solutions for Different Phases of COVID-19 Pandemic

Evaluation of Google Trends and Twitter for symptom-based time-series data

Models: Probabilistic log linear regression and Random Forest for trend analysis and forecasting
Comparison with Kogan et al. in the U.S., showcasing F1 scores for tracking RKI confirmed cases

Google Trends predated RKI confirmed cases and hospitalizations by a median of 16 and 19 days

Customized transformer-based model for structured EHR data and ARM endpoint risk modeling

Transfer learning enables utilization of pre-trained ExMed-BERT model for diverse clinical endpoint predictions
Performance enhancement through incorporation of quantitative clinical data

Identification of several known risk factors as important features for our model

Identification of TYK2 as a potential drug target for COVID-19 using ML predictions

Potential COVID-19 treatments: Regorafenib and Sorafenib, based on cellular screening assays

Ongoing clinical trialds for Regorafenib and Sorafenib efficacy

Demonstration of ML-based risk models' utility in identifying drug targets and treatment options for COVID
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